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Single Axis Piezoceramic Gimbal

Garnett Hornera and Barmac Taleghanib

aNASA Langley Research Center, MS 230, Hampton VA 23681

bU.S. Army Vehicle Technology Directorate, Hampton, VA

ABSTRACT

This paper describes the fabrication, testing, and analysis of a single axis piezoceramic gimbal.  The fabrication process
consists of pre-stressing a piezoceramic wafer using a high-temperature thermoplastic polyimide and a metal foil.  The
differential thermal expansion between the ceramic and metal induces a curvature.  The piezoceramic is mounted on a
support mechanism and a mirror is attached to the piezoceramic.  A finite element analysis of the gimbal is described and the
predicted gimbal angle versus applied voltage is compared to experimental results.

Keywords: actuator, gimbal, piezoceramic, scanner

INTRODUCTION

The development of a new processing technique called THUNDER (THin-layer composite UNimorph piezoelectric Driver
and sEnsoR) technology1 enables new types of actuator concepts.  The THUNDER technology produces a curved
piezoceramic by combining a flat piezoceramic wafer with a thin metal foil using a polyimide thermoplastic called LARC™-
SI as an adhesive.  Using a thin film of the LARC™-SI between the metal foil and the piezoceramic, the three layers are held
together under pressure while they are heated above the melting point of the LARC™-SI to produce a composite.  As the
composite is cooled below the melting point of the LARC™-SI, the foil is bonded to the piezoceramic.  Upon further cooling,
the miss-match in coefficient of thermal expansion between the metal foil and the ceramic causes a compressive prestress in
the piezoceramic at room temperature.

This curved composite using THUNDER technology produces large amplitudes of motion when a voltage field is applied
across the piezoceramic.  Depending upon the polarity of the applied field, the radius of curvature of the composite will either
increase or decrease.  When mechanisms are coupled to the composite along the axis of symmetry, translational motion is
achieved as the applied field is varied.

The purpose of this paper is to investigate an approach for producing rotational motion using THUNDER technology.  The
resulting piezoelectric gimbal does not have any moving parts.  This piezoceramic gimbal would be used with a small mirror
to produce a scanner for applications to sampling or surveillance-type instruments on spacecraft.

1. THE CONCEPT

The concept is to transform the linear motion of the THUNDER technology composite into rotational motion.  We note that
the radius of curvature of a single THUNDER technology piezoceramic composite changes with applied voltage field.  This
is shown schematically in Figure 1.
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Figure 1: Changes in curvature of THUNDER wafer with free-free boundary conditions

We suggest that if the increased and decreased changes in curvature could be combined into a single composite, the axis of
symmetry would rotate instead of translating.  It is this angular motion that could be used as a gimbal actuator for a device
such as a scanning mirror.

As shown in Figure 2, starting with an unelectroded piezoceramic wafer such as PZT-5A, an identical electrode pattern is
screened onto both sides of the ceramic.  The screening process uses a mask and silver paste to apply the electrode pattern.
There are two electrode surfaces with the opposite sides having identical electrode pattern.  These four electrode surfaces
constitute two independent piezoceramic actuators.  Since the electrode surfaces are equal in area, there are two separate
actuators on a single piezoceramic wafer.

Figure 2: Electrode pattern

The process for fabrication of this gimbal is similar to that used to process THUNDER technology piezoceramics.  A .008”
thick electroded PZT-5A ceramic is bonded to a .002” thick sheet of stainless steel using a polyimide thermoplastic.  The
bonding or consolidation of these pieces is done in an autoclave at elevated temperature and pressure.  As the autoclave is
cooled, the thermoplastic adhesive bonds but since there is a mismatch in the coefficient of thermal expansion (CTE)
between the PZT ceramic and the stainless steel, the consolidated assembly is curved due to different thermal strains in the
ceramic and metal.  A consolidated assembly with electrical leads attached is shown in Figure 3.

PZT Ceramic

Electrode Electrode

Positive voltage

Negative voltage
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Figure 3: Consolidated, pre-stressed piezo-metal composite

As shown in Figure 4, after consolidation, the curved piezo-metal composite is bonded to a polypropylene mount and a
mirror is bonded in the center.  The polypropylene has good fatigue properties, which allows the mount to be made from a
single sheet of the polypropylene.  A mechanism was formed by making partial cuts in the material along the desired hinge
axis.  Next, each half of the ceramic is poled in the same direction by applying 500 volts D.C.

Figure 4: Piezo-metal composite with mirror

The piezoceramic halves are connected such that the positive side of one half is connected to the negative side of the other
half.  The negative side of the first half and the positive side of the second half are connected to an amplified voltage source.
In this way, one amplifier can be used to drive the two halves in the opposite sense.  That is, as one half is becoming more
domed and shorter, the other half is becoming less domed and longer.  This combination of motions causes the mid-point
between the two piezoceramics to rotate.  This mid-point rotation can be used to command and control the mirror gimbal
angle.

2. TEST RESULTS

The gimbal angle was measured as a function of the applied voltage using the setup shown in Figure 5.  The light source is
reflected off the mirror onto a detector that measures a translational distance s, along the detector.  Knowing the distance r,
from the mirror to the detector and using a small angle approximation, the gimbal angle is simply s/(2r), that is, half the
reflected beam angle.

Polypropylene mount

Mirror
Piezo-Metal composite



4

Using a data acquisition system, the voltage applied to the piezoceramic and the corresponding location of the beam on the
detector are stored for several cycles.  The voltage was varied between ±200 volts at nearly quasi-static conditions.  The
results of this test are shown in Figure 6.  As seen from the hysteresis, the composite piezoceramic gimbal is non-linear and
dissipative.  This is likely due to several factors.  First, the piezoceramic is a sintered material which will likely exhibit
micro-level motion between adjacent particles.  Second, the polymer used to bond the metal foil to the piezoceramic could
have some dissipation.  From the data, the gimbal angle varies between -0.64 to 1.18 degrees.  Nominally, this is ±0.91
degrees.

Figure 5: Experimental set-up for measuring gimbal angle as a function of driving voltage

Piezoceramic Gimbal
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Figure 6: Angular displacement as a function of applied voltage
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3. ANALYSIS

Various aspects of the analytical model generation and validation are discussed.  Commercially available software tools were
used.  Results generated with the models are presented and compared with test data.

3.1 Modeling Approach

A NASTRAN®2 non-linear finite element model was developed for predicting dome heights resulting from fabrication and
applied voltages to the PZT layer.  The finite element model assumes that all layers are bonded at the glass transition
temperature of LARC™-SI (assumed to be 250 degrees C).   The bonding constrains all layers to move together while the
specimen is cooled, generating thermal stresses due to differing CTEs in the layers. This bonding was modeled by attaching
the layers together using rigid bars.  Since thermal load equivalent to voltage was applied to PZT layer the nodes that are
connect to rigid bars on the PZT layer are set to be independent.  This will allow the PZT layer to be the driving layer during
straining due to thermal load.  The model only accounts for the process when the device was cooled from 250 degrees C to
room temperature (25 degrees C).

The modeling effort is divided into two parts; the first part models the cooling process from the glass transition temperature
to room temperature where the initial doming occurs.   The thermal strain resulting from the cooling is

                                                                                     Tthermal ∆= αε                                                                                (1)

where thermalε  is the thermal strain due to the cooling process α is the average coefficient of thermal expansion of all layers

calculated by NASTRAN®, and T∆ is the temperature difference.

 The second part models the strain resulting from the applied voltage,

                                                                                            
pzt

piezo
t

V
d31=ε                                                                            (2)

where piezoε is the piezoelectric strain, d31 is the piezoelectric charge constant, V is the applied voltage, and pztt is the

thickness of the PZT layer.

To incorporate the voltage effects into the NASTRAN® model, a simple thermal analogy was used.  The total strain due to
voltages as well as initial cooling was determined as follows

                                                                                     piezothermaltotal εεε +=                                                                (3)

3.2 Model description

The model was developed and using I-DEAS®3 Master Series Version 6.0.  A mid-surface was created on each layer.  After
meshing was completed, the mid-surfaces were connected using rigid bars as shown in Figure 7.

The NASTRAN® model was constructed using 4 layers of stainless steel, polyimide, PZT 5A, and polyimide.  The material
properties for each layer are shown in Table 1.  The finite element model has 160 CQUAD4 quadrilateral plate elements, 164
rigid elements (RBAR’s), 220 nodes, and 1100 degrees-of-freedom.  The boundary conditions for the model are pinned at
one end and guided at the other end.  Since the device exhibits geometric non-linearity due to large displacements, SOL 106
was used in NASTRAN® for non-linear static thermal analysis.  To assure convergence, the temperature range was divided
into ten segments.  Although rigid bar elements are not recommended for use in non-linear analysis of systems undergoing
large deformations, the observed element deformation is small and the associated error is negligible.  Based on the
manufacturers’ data4, a value of d31= - 6.9x10-9 inches/volt, was used.
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Figure 7.  Sketch of lay-up construction using rigid bars

The assumption was made that at 250 degrees C the layers are bonded and consolidated.   Therefore, the cooling process was
modeled from 250 degrees C to 25 degrees C.  RBAR elements were used to model this bonding.  Since RBAR’s connected
two layers together, there exist independent and dependent degrees of freedom nodes on each layer.  The nodes on the PZT
mid-layer had the independent degrees of freedom, and all the nodes on other layers had the dependent degrees of freedom.
TEMP (INIT) and TEMP (LOAD) NASTRAN® commands were used to assign initial and final temperature loads to
TEMPD cards.  The analysis included two subcases: The initial analysis modeled the fabrication cooling process; the second
kept all of the grid points at room temperature, while voltages (as equivalent temperatures) were added to nodes on the PZT
layer.  Upon completion of the NASTRAN® analysis, the results were exported to I-DEAS® for graphical presentation.

Material Thickness
(in.)

Modulus of
Elasticity (E)

(psi) x
610

Coefficient of
Thermal Expansion

(CTE) C06 /10−

Layer 1 LARC™-SI 0.002 0.58 46
Layer 2 PZT 5A 0.008 9 1.5
Layer 3 LARC-SI 0.002 0.58 46

Layer 4 (Bottom layer) Stainless Steel 0.002 38 17.3

Table 1: Lay-ups and Material Properties used in NASTRAN Non-linear model

3.3 Analysis results

As shown in Figure 8 the rotational angle of the center nodes about the y-axis represented the rotational angle of the gimbal.
Since the rotation was extremely small, the displacements in the z direction of nodes located on both sides of the center nodes
were used to verify the gimbal rotation angle. The calculated peak angle for the center node was 0.81 degrees whereas the
nominal experimental result was 0.91degrees.  Figure 9 shows a plot of the rotational angles as a function of applied voltage
for the center nodes.

x

yzRigid Bar
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Figure 9: Rotation at the center nodes as a function of input voltage

Figure 8: Nodes with measured rotational and
translational degrees of freedom
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4. ANALYSIS VS. TEST RESULTS

From the results in Figure 9, the relationship between the rotational angle and the input voltages is almost linear.  This
conclusion applies to both positive and negative voltages.  Results are shown in Figure 9 for positive voltages only.  The
analysis predicted a gimbal angle of ±0.81 degrees for a driving voltage of  ±200 volts.  The experimental measurement of
the gimbal angle is approximately ±0.91 degree for ±200 volts.  In general, the analytical model is stiffer than the actual
hardware.  Several factors contribute to this discrepancy.  First, the polypropylene support has a non-ideal hinge at both ends
that support the curved piezoceramic composite.  This non-ideal hinge has friction and stiffness, which are not included in the
model.  Secondly, the actual piezoceramic composite is thicker than the FEM at several locations because of the thickness of
the electrical leads.  Thirdly, the FEM does not model the material damping that gives rise to the hysteresis loop in the actual
response data.  Finally, a key factor in the difference between analysis test is the value of d31.   There have been numerous
references dealing with the relationship between piezoelectric constant d31 and stress.   Jaffe, Cook and Jaffe5 show plots
where stress causes a change in d31 of a factor of two.  Since THUNDER actuators are unimorph and exhibit curving, any
change in curvature causes a change in stress, which in turn causes a change in d31.   The piezoelectric constant that was used
for this analysis was based on the manufacturer’s data.  However, since there is so much uncertainty in the value of d31, a
sensitivity study was conducted to determine the effect of d31 on rotation.  Rotational angles were plotted against
piezoelectric constant as seen in Figure 10.  Recall, the value used for d31 was –6.9x10-9 in/Volt.  The value of d31 which
yielded the experimental result was d31=-7.8x10-9in/Volt.

Figure 10: Plot of rotational angles as a function of piezoelectric constant d31
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5. CONCLUDING REMARKS

This paper describes the fabrication, testing, and analysis of a single axis piezoceramic gimbal.  The fabrication process
consists of pre-stressing a piezoceramic wafer using a high-temperature thermoplastic polyimide and a metal foil.  The
differential thermal expansion between the ceramic and metal induces a curvature.  The piezoceramic is mounted on a
support mechanism and a mirror is attached to the piezoceramic.  A finite element model of the piezoceramic gimbal was
used to predict gimbal behavior.  The difference between calculated and measured analyses was about 11 percent.  A
sensitivity study on the piezoelectric charge constant d31 (which was an uncertain input value to the analysis) was performed.
This sensitivity study indicated that given a small error in this value had a large effect on the analytical results.

The feasibility of the gimbal as a high frequency scanner has been demonstrated.  In general, piezoceramics can achieve high
frequency response and it is anticipated that this scanner will, also.  The piezoceramic gimbal is simple, inexpensive to
manufacture, has no parts to wear out, and is lightweight.
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